Class Notes - PH 301 & PH 401 - MODULE -4(Electro Magnetic Theory)

Displacement Current and
Maxwell’s Equations

Displacement Current

We saw in Chap.7T that we can use TN
Ampeére’s law to caleulate magnetic By |
fields due to currents. B ¥ i \s '-__
We know that the integral ¢, B - ds =====d=———mJ=========-
around any close loop €' is equal to AV |
Lolinel, Where iy = current passing an .Iml' . )
area bounded by the closed curve C. loop C© '
£.E.

= Flat surface bounded by loop C

—~_/ = Curved surface bounded by loop C

If Ampére’s law is true all the time, then the i determined should be inde-
pendent of the surface chosen.
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Let's consider a simple case: charging a

capacitor.

From Chap.5, we know there is a current

flowing i(t) = %f—‘fﬁc, which leads

to a magnetic field observed B. With .

Ampére’s law, ., B - ds = pgisng.
BUT WHAT 18 i,,.,7

. ‘L
i
If we look at O Tined = i(t)
I .
E| .- o
If we look at “_/, dgma =10 loop €
(- There is no charge flow between the § Lh IH “: i
capacitor plates. ) U +“ "—
- Ampere’s law i1s either WRONG or + -
INCOMPLETE.

Two observations:

1. While there is no current between the capacitor’'s plates, there is a time-
varying electric field between the plates of the capacitor.

2. We know Ampére’s law is mostly correct from measurements of B-field
around circuits.

}
Can we revise Ampere’s law to fix it?
: - g Q
Electric field between capacitor’s plates: £ = — = e where ) = charge on
En Egf

capacitor’s plates, 4 = Area of capacitor’s plates.

Q=E{|E'A =E[|"I7'E
Electric flux

-. We can define

dQ [ ddp

e e
where i;op 15 called Displacement Current (first proposed by Maxwell).
Mazxwell first proposed that this is the missing term for the Ampére’s law:
dd

é B.ds= Holtind + ED?] Ampére-Maxwell law
o
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Where i;,,; = current through any surface bounded by ', B
& = electric flux through that same surface bounded by curve C, & = JI" o E-da.

11.2 Induced Magnetic Field

We  learn  earlier that electric field «can be  gemerated by
charges
changing magnetic flur
We see from Ampére-Maxwell law that a magnetic field can be generated by
moving charges (current)
changing electric flur '
That is, a change in electric flux through a surface bounded by C' can lead to an
induced magnetic field along the loop C.

INCREASE
E. E-FIELD
+ — MAGNITUDE
7 J—- -
+| || =
I

DECREASE
E-FIELD
MAGNITUDE

Notes The induced magnetic field is along the same direction as cansed by the
changing electric flur.

Example What is the magnetic field strength inside a circular plate capacitor
of radius R with a current [(#) charging it?

Answer Electric field of capacitor
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Blwrd {loop C)

Electric flux inside capacitor through a
loop €' of radius r:

A

Assume an
increasing
Or? E-field into
bp =F . 7r° = the page
E Tr TP
"
R
Ampére-Maxwell Law inside capacitor:
T . dd g
?gﬂ-ds = poliead + Co——)
c
R —
~ -'EI nn!uczn!""ﬁr
d ; Qr*
277 Bindueed = J—ﬁ}fn—(,_ 2)
Langlmmp C dt LDR
B r? dQ
- R
—
I(t)
[T
Bfﬂdmd = ﬁ “:f]l forr < R

Outside the capacitor plate:
Electric flux through loop O &g = FE -

A
"R =2 Asure o0
Ep E-field into
the page
= . ddg
%B'fi = po(ting + o T, )
o
1 dQ
2rrB = ppE —
T Dinduced Hiy {I(LD dt )
It
B{miuced - f-“;ﬁEﬂ ]I
1]} -

Maxwell’s Equations

The four equations that completely describe the behaviors of electric and magnetic
fields.
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The one equation that describes how matter reacts to electric and magnetic fields.

— — —

F=g(F+dxB)

Features of Maxwell's equations:

(1) There is a high level of symmetry in the equations. That’s why the study
of electricity and magnetism 1s also called electromagnetism.
There are small asymmetries though:

i) There is NO point "charge” of magnetism / NO magnetic monopole.
i) Direction of induced E-field opposes to B-flux change.

Direction of induced B-filed enhances E-flux change.

: axwell's equations predict e existence of propagating waves o e
2) M II's equati predicted th t f propag g f E-field
and B-field, known as electromagnetic waves (EM waves).

Eramples of EM waves: wisible light, radio, TV signals, mobile phone
signals, X-rays, UV, Infrared, gamma-ray. microwaves. ..

(3) Maxwell's equations are entirely consistent with the special theory of rela-
tivity. This 1s not true for Newton's laws!
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Electromagnetic theory is a discipline concerned with the study of charges at rest and in motion.
Electromagnetic principles are fundamental to the study of electrical engineering and physics.
Electromagnetic theory 1s also mdispensable to the understanding, analysis and design of various
electrical, electromechanical and electronic systems. Some of the branches of study where
electromagnetic principles find application are:

RF communication
Microwave Engineering
Antennas

Electrical Machines

Satellite Communication
Atomic and nuclear research
Radar Technology

Remote sensing

EMI EMC

Quantum Electronics

VLSI

Electromagnetic theory 1s a prerequisite for a wide spectrum of studies in the field of Electrical
Sciences and Physics. Electromagnetic theory can be thought of as generalization of circuit theory.
There are certain situations that can be handled exclusively m terms of field theory. In
electromagnetic theory, the quantities involved can be categorized as source quantities and field
quantities. Source of electromagnetic field is electric charges: either at rest or in motion. However
an electromagnetic field may cause a redistribution of charges that in turn change the field and

hence the separation of cause and effect 1s not always visible.

Electric charge 1s a fundamental property of matter. Charge exist only in positive or negative

integral multiple of electronic charge, -¢, € =1.60x10"° coulombs. [It may be noted here that in
1962, Murray Gell-Mann hypothesized Quarks as the basic building blocks of matters. Quarks
were predicted to carry a fraction of electronic charge and the existence of Quarks have been
experimentally verified.] Principle of conservation of charge states that the total charge (algebraic
sum of positive and negative charges) of an 1solated system remains unchanged, though the charges
may redistribute under the influence of electric field. Kirchhoff’s Current Law (KCL) is an
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assertion of the conservative property of charges under the implicit assumption that there 1s no

accumulation of charge at the junction.

Electromagnetic theory deals directly with the electric and magnetic field vectors where as circuit
theory deals with the voltages and currents. Voltages and currents are integrated effects of electric
and magnetic fields respectively. Electromagnetic field problems involve three space variables
along with the time variable and hence the solution tends to become correspondingly complex.
Vector analysis 1s a mathematical tool with which electromagnetic concepts are more conveniently
expressed and best comprehended. Since use of vector analysis i the study of electromagnetic
field theory results in real economy of time and thought, we first introduce the concept of vector

analysis.
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In this course we consider light to be electromagnetic waves of frequencies v in the visible range, so
that v ~ (4 — 7.5) x 10! Hz. Since A = —, where ¢ is the speed of light in vacuum (¢ = 3 x 108
m/s), we find that the corresponding wavelength interval is A ~ (0.4 — 0.75) pm. Thus, to study
the propagation of light we must consider the propagation of the electromagnetic field, which is
represented by the two vectors E and B, where E is the electric field strength and B is the magnetic
induction or the magnetic flux density. To enable us to describe the interaction of the electromagnetic
field with material objects we need three additional vector quantities, namely the current density J,

the displacement D, and the magnetic field strength H.

Maxwell’s equations

The five vectors mentioned above are linked together by Maxwell’s equations, which in Gaussian
units are

1 4

VxH=-D+—1J, (1.1.1)
¢ ¢

1.

VxE=—--B. (1.1.2)
C
In addition we have the two scalar equations

VD = 4mp, (1.1.3)
V-B=0, (1.1.4)

where p is the charge density. Equation (1.1.3) can be said to define the charge density p. Similarly,
we can say that (1.1.4) implies that free magnetic charges do not exist.

The continuity equation

The charge density p and the current density J are not independent quantities. By taking the
divergence of (1.1.1) and using that V- (V x A) = 0 for an arbitrary vector A, we find that

1 .
V- J+—V-D=0,
47
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which on using (1.1.3) gives

V-J+p=0. (1.2.1)

This equation is called the continuity equation, and it expresses conservation of charge. By inte-
grating (1.2.1) over a closed volume V' with surface .S, we find

f/ V- Jdv = —fff z—':dv, (1.2.2)
J J;

which by use of the divergence theorem gives

ﬁ.]-ﬁdaz—%]/fpdvz—%@. (1.2.3)
s %

Here 1 is the unit surface normal in the direction out of the volume V', so that (1.2.3) shows that
the integrated current flux out of the closed volume V' is equal to the loss of charge in the same
volume.

Digression 1: Notation

e Bold face is used to denote vector quantities, e.g.

E=FE.é; + Eye, + E.ée;,
where €;, ey, and €, are unit vectors along the axes in a Cartesian co-ordinate system.

e A dot above a symbol is used to denote the time derivative, e.g.

-
B=_—B.
ot

¢« E B D, H, p, and J are functions of the position r and the time ¢, e.g.
D =D(r,1).

e The connection between Gaussian and other systems of units, e.g. MKS units, follows from
J.D. Jackson, "Classical Electrodynamics”, Wiley (1962), pp. 611-621. For conversion between
Gaussian units and MKS units, we refer to the table on p. 621 in this book.

The material equations

Maxwell’s equations (1.1.1)-(1.1.4), which connect the fundamental quantities E, H, B, D, and J,
are not sufficient to uniquely determine the field vectors (E, B) from a given distribution of currents
and charges. In addition we need the so-called material equations, which describe how the field is
influenced by matter.

In general the material equations can be relatively complicated. But if the field is fime harmonic
and the matter is isotropic and af rest, the material equations have the following simple form

J.=oE, (1.3.1)

D =:E, (1.3.2)
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B=yuH, (1.3.3)

where o is the conductivity, £ is the permittivity or dielectric constant, and p is the permeability.

Equation (1.3.1) is Ohm’s law, and J. is the conduction current density, which arises because
the material has a non-vaninishing conductivity (o # 0). The total current density J in (1.1.1) can
in addition consist of an externally applied current density Jg, so that

J=Jy+J,=Jy+0E. (1.3.4)

Digression 2: General material considerations

e A material that has a non-negligible conductivity o is called a conductor, while a material that
has a negligible conductivity is called an insulator or a dielectric.

e Metals are good conductors.
e Glass is a dielectric; € =~ 2.25; 0 = 0; p = 1.

¢ In anisotropic media (e.g. crystals) the relation in (1.3.2) is to be replaced by D = gE, where
€ Is a tensor, dyadic or matrix.

e In a plasma (1.3.1) is to be replaced by J = gE, where the conductivity is a tensor.

e There are also magnetically anisotropic media, in which (1.3.3) is to be replaced by B = puH.
Thus, in this case the permeability is a tensor. Such materials are not important in optics.

e In dispersive media ¢ is frequency dependent, ie. £ = £(w). Maxwell’s equations and the
material equations are still valid for each frequency component or time harmonic component
of the field. For a pulse consisting of many frequency components, one must apply Fourier
analysis to solve Maxwell’s equations and the material equations separately for each time
harmonic component, and then perform an inverse Fourier transformation.

e In non-linear media there is no linear relation between D and E (equation (1.3.2) is not valid).
Most media become non-linear when the electric field strength becomes sufficiently high.

1.4 Boundary conditions

Hitherto we have assumed that ¢ and p are continuous functions of the position. But in optics
we often have systems consisting of several different types of glass. At the transition between air
and glass or between two different types of glass the material parameters are discontinuous. Let us
therefore consider what happens to the electromagnetic field at the boundary between two media.

Consider two media that are separated by an interface, as illustrated in Fig. 1.1. From Maxwell’s
equations, combined with Stokes’ and Gauss’ theorems, one can derive the following boundary
conditions

n-(B? —-BW) =0, (1.4.1)
n-(D® —DW) = 4rp,, (1.4.2)
nx (E® -EW) =0, (1.4.3)
nx (H? -HY) = %J (1.4.4)

where 1 is a unit vector along the surface normal. According to (1.4.1) the normal component of
B is continuous across the boundary, while (1.4.2) says that if there exists a surface charge density

Page 1 O



Class Notes - PH 301 & PH 401 - MODULE -4(Electro Magnetic Theory)

E1r Y

€9, Wo

Figure 1.1: A plane interface with unit normal n separates two different dielectric media.

ps at the boundary, then the normal component of D is changed by 4wp, across the boundary
between the two media. According to (1.4.3) the tangential component of E is continuous across
the boundary, while (1.4.4) implies that if there exists a surface current density J, at the boundary,
then the tangential component of H, i.e. of n x H, is changed by 47’"'.]3.

Free-space wave equation

We consider first propagation in a homogeneous,isotropic,nonconducting(o=0),source-

free(p=0,J=0),dielectric medium. & and gz are constants at all points and i all directions in space).
We have:
V-E=0V-B=0

VXEZ—@ V><ﬁ:@=>V><§=8,uE
ot ot ot

Since a time-varying B-field gives rise to an E-field,and vice versa,it may be possible to derive a

single differential equation for E .We do this by faking:

o°E
ot?

= 0B, 0, =
Vx(VxE)=Vx(—)=——(VxB) =—¢g
( ) ( a,[) at( ) =—¢u

Now,Vx(VxE) =V(V-E)-V?E

But, V- E=0 ,50 we have:
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This 1s the Maxwell wave equation for the electric field.If one want to eliminate E in Maxwell’s

equation,one must find the same wave equation for H:

One can solve either wave equation for E and H,and then use Maxwell’s equations to determine
the other.It turns out that although virtually all optics publications start with the wave equation for
E,there are situations(e.g. photonics crystal mode calculations)when it 1s preferable to solve for H

first.

Of course, you might ask,what does V?E even mean?The Laplace operator V? operates on

scalar wave equations,one for each vector component:

0°E;

atZ

V2E; = eu

=X,y,Z

Wave equations have the general form

- 1 0%f
VAE(r,t)= e
Where f=scalar wave amplitude

v=speed(more precisely,the phase velocity of the wave)

Thus the speed of an electromagnetic wave is:

In vacuum ur =é&r=1,s0 the speed of light 1s:

c= 1 =2.997924580x10°m/s

NELT

For most optical materials, gr =1,s0:
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Where n =+/é&r 1s the familiar index of refraction.

Plane Wave Solutions:

The simplest solution to Maxwell’s wave equation 1s, of course,the simple harmonic plane wave
E(r,t) = Eocos(wt —k - r) Eo=constant

Where

Kk =propagation vector or wave vector

|k |= 27” , A =wavelength

It should be noted that,strictly speaking,the plane wave 1s an unphysical solution—it has infinite
extent in both space and time.Indeed,it 1s well to remember that just because a particular
mathematical solution exists does not mean it can exist in physical reality.So why 1s the plane

solution so useful?Two reasons:

1. There are physical situations which are very approximated by this solution.(e.g. the central

region of a well-collimated laser beam)

2. These solutions can serve us as a mathematical basis set for expanding realistic waves in.(We’'ll

come back to this later).

The electric field 1s a measurable quality,and hence must be represented as a real number.It 1s
convenient,however,to write E(F, t)= Eexp[i (ot —k F)] and then take the real part as physically

relevant field.

Plugging into the wave equation,we have:

Page 1 3
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And:

’E

g o = —w*cuE

2

So
k? =w’su
This 1s called a “dispersion relation”,which relates the wave vector to the frequency.
Applying Maxwell’s equations to the plane wave,we have:
V-E=0
=>
V -{Eoexp[i(awt —k - )]} = Eo- Vexp[i(wt —k - r)] = —ik Eoexp[i(at —k - )] =0

Or:k-E=0

=>The field 1s transverse to the direction of propagation (same is true for the B field).

From the curl equation:

VXE:—@
ot

-
_ikxE =—iwB

kxE =wB

Thus the plane wave has the following structure:

Page 1 4



Class Notes - PH 301 & PH 401 - MODULE -4(Electro Magnetic Theory)

_\__/_7‘;___

Here shows the wave fronts (dotted line)

(Note thatk ,E,and B form a right-handed orthogonal set)

Also,E and B are in phase:

L / 2
Magnitudes:|B|:m|E|—ﬂ|E|:E|E|
0] C

A summary of Electromagnetic Theory:
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Electromagnetic Wave Equation

Recall that in a “simple” dielectric material, we derived the
wave eguations:

E =0 [¢5)

VEH - el = 0 (2)
To derive these equations, we used Maxwell's equalions with
the assumptions that the charge density g and current density J
were zero, and that the permeability g and permittivity £ were
constants

We found that the above equations had plane-wave solutions,
with phase velocity:

(3)

Maxwell's equations imposed additional constraints on the
directions and relative amplitudes of the electric and magneatic
flelds.

Electromagnetic Wawve Equation in Conductors

How are the wave equations {and their solutions) modified for
the case of electrically conducting media?

We shall restrict cur analysis to the case of chmic conductors,
which are defined by:

F=ok (4)

where ¢ is 8 constant, the conductivity of the material.

All we need to do is substitute from eguation (4) into Maxwell's
eguations, then proceed as for the case of a dielectric...

Flane Monochromatic Wave in a Conducting Material

The wave eqguation for the electric field in a conducting
material is {11):

VIE  poE - peE =0 (12)
Let us trv a solution of the same form as before:

Bty = ‘;:GH_.[-»A k) (13)
Remember that to find the physical field, we have to take the
real part. Substituting {13) into the wave equation (11) gives
the dispersion relation:

_i? — Jupr = wzus =0 {14)

Compared to the disparsion relation for a dielectric, the new
feature is the presence of an imaginary term in ¢. This means
the relationship betwesn the wave vector £ and the frequency w
is a little more complicated than before.

Plane Monochromatic Wave in a Conducting Materia

In our “simple” conductor, Maxwell's equations take the form:

V-E =0 (5)
v-B=o0 (8)
VxlE = —H [ea)
VxB = B+ pl ()

where Jis the current density. Assuming an chmic conductor,

wie can write;
T=oF {9)
50 equation (8) becomes:
Vxh"=;<d.-.=—;ao?-f (10)

Taking the curl of equation (7) and making appropriate
substitutions as before, we arrive at the wave eguation:

'V‘zf—pm‘:'—pr; =0 (11)

Plane Monochromatic Wavwve in a Conducting Materia

From the dispersion relation (14), we can expect the wave
vector k to have real and imaginary parts. Let us write:

k=a- jd (15)
for parallel real vectors @ and §.

Substituting {15) into the dispersicn relation (14) and taking
real and maginary parts, we find:

11 12
= w,E =+ =11 16
a=w/iE |z tsy1t (16}
and:
e
=" 17
2ax an

Equations (16) and (17) give the real and imaginary parts of
the wave vector k in terms of the frequency «, and the material
properties w, £ and a.

Flane Monochromatic Wave in a Conducting Material

Using eguation {15) the sclution (13) to the wave eguation in 2
conducting material can be written:

E(#,{) = Bl wt=@7 =57 (18)

The first exponential factor, &3t~ 7} gives the usua
plane-wave variation of the field with position 7 and time ¢,
note that the conductivity of the material affects the
wavelength for a given frequency.

The second exponential factar, e wes an exponential decay

in the amplitude of the wava.._

Flane Monochromatic Wawve in a Conducting Materia
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Flane Meonochromatic Wave in a Conducting Material

In a "simplg” non-conducting material there is no exponentia
decay of the amplitude: electromagnetic waves can travel for
aver, without any loss of energy.

If the wave enters an electrical conductor, however, we can
expect very different behaviour. The electrical field in the wave
will cause currents to flow in the conductor, When a current
flows in a conductor {assuming it is not a superconductor)
there will be some energy changed inte heat. This energy must
come from the wave, Therefore, we expect the wave gradually
to decay.

Class Notes - PH 301 & PH 401 - MODULE -4(Electro Magnetic Theory)

Flane Monochromatic Wawve in a Conducting Materia

The varying electric field must have a magnetic field associated
with It. Presumably, the magnetic field has the same wave
vector and frequency as the alectric field: this is the only way
wie can satisfy Maxwell's equations for all positions and times,
I'herefore, we try a solution of the form:

B(7,t) = Hoedlot=£7) (19)
MNow we use Maxwell's equation (7):
VxE=-0 {20}
which gives:
Ex Ey = why (21)
ar.
Hy= £ = Fg (22)
w
a

Flane Monochromatic Wave in a Conducting Material

The magnetic field in a wave in a conducting material is related
to the electric field by (22):

A
Hy=—x Ey (23)

w
As in a non-conducting material, the electric and magnetic
fields are perpendicular to the direction of motion (the wave is
a transverse wave) and are perpendicular to each otner.

But there is a new feature, because the wave vector is complex.

In a non-conducting material, the electric and magnetic fields
were in phase: the expressions for the fields both had the same
phase angle dg. In complex notation, the complex phase angles
of the figld amplitudes Fy and Hy were the same,

In a conductor, the complex phase of k gives a phase difference
hetween the electric and mannatic fislds

Plang Monochromatic Wawve in a Conducting Materia

In a conducting material, there is a difference between the
phase angles of Ep and By, given by the phase angle ¢ of k.
This is:

taro:i (24}
(3
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Plane Monochromatic Wave in @ Poor Conductor

Let us consider the speclal case of a good insulator. In this
case;

o wE {25)

From equation (16), we then have:

Ve (26)

and from eguation (17) we have:

o s

i m _ oo
TERVE T 2e
It Tollows that G < oo We recover the same situation as in the
case of a non-conducting material. The decay of the wave is
very slow (in terms of the number of wavelengths); the
magnetic and electric components of the wave are
appraximately in phase (¢ = 0), and are related by:

(a7)

Eq
Up

By = Ly = (28)
"

where the phase velocity v, Is, as before, given by v = 1/, /%,
12

Plane Monochromatic Wave in a Good Conducior

Let us consider the special case of a very good conductor. In
this case:

T we (29)

From equation {16], we then have:

[Ty
o, 30
Vo2 (30)
and from eqguation (17) we have!
WT
= 31
> o (31)

In the case of a very good conductor, the real and imaginary
parts of the wave vector £ become equal. This means that the
dacay of the wave is wvery fast in terms of the number of
wavelengths,

Note that the vectars & and 3 have the same units as Ir', i.e
meters 1

13

Phase Velocity in a Good Conductor

The electric field in the wave varies as (18):
E{it) = F-foz-l(“*"‘=""7n“’c"" (32)
I'ne pnase velocity is the velocity of a point that stays in phase

with the wave, Consider a wave moving in the 4z direction
E(7t) = Epedlt-as)=0s (33)

For a point staying at a fixed phase, we must have:

wt — qez{t) = constant {34)

So the phase velocity Is given by:
_dz _w

Td w
But note that in a good conductor, o is itsel’ a function of w, .,

vp {35)

Phase Velocity in a Good Conductor

For a poor conductor (o < we), we have:
o = e (36)
50 the phase velocity in a poor conductor is:

p = sl 25— (37)
5% A/ HE
If g and £ are constants (i.e. are independent of w) then the
phase velocity is independent of the frequency: there is no
dispersian,

Howewver, in 2 good conductor (o 5 we), we have:

(38)

vy = oy [ 8 (39)

o

The phase velocity depends on the frequency. there is
dispersian!
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Phase Velocity and Group Velocity

I'he prasence of dispersion means that the group velocity v,
(the velocity of a wave pulse) can differ fram the phase velocity
up (the velocity of a point staying at a fixed phase of the wave).

To understand what this means, consider the superposition of
two waves with egual amplitudes, both moving in the +z
direction, and with similar wave numbers:

E; = Ep cos (wyt — [ko + Ak 2] + Epcos (w—t — [kg — &K] )

(40)
Using a trigonometric identity:
A B FA = By
cos A+ cos B = 2cos (2T 5 coe [ ) (41)
/ Vo2
the electric field can be written:
E, = 2Fycos (wot — kpz) cos (Awt — Akz) (42)
where:
1 P
ch:;(u'| } u-_) Aw=w) —w_ (43)

16
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Phase Velocity and Group Velocity

We nave written the total electric field in our superposed waves
as (42):

Ey = 2Eycos (wqt — kpz) cos (Awt — Akz) (aa)
Assuming that Ak < kg, the first trigonometric facto

represents a wave of (short) wavelength 2=/kg and phase
velocity:

«o
v = — 45
= (45)
while the second trigonametric factor represents a modulation
of (long) wavelength 2m/Ak, which travels with velocity:
- Fave)
T Ak
vg is called the group velocity. Since Aw represents the change
in frequency that corresponds to a change &k in wave number,
we can write;

(48)

Y =T (47)

17

Group Velocity and Energy Flow

'l_lllL?m II|||I| “MHH?\{I\.WHHNHH,\XM'

||I|J}/ YU

The red wave moves with the phase velocity gt the modulation
(represented by the blue line) moves with group velocity ug.

Since the energy in a wave depends on the local amplitude of
the wave, the energy in the wawve is carried at the group
velacity vy,

Phase Velocity and Group Velocity

If there is no dispersion, then the phase velocity is independent
af frequency:

wp = I = constant (48)
and the group velocity is equal o the phase velocity:
d
Yy =—=u 49
(] dk ed (a9}

In the absence of dispersion, a modulation resulting from the
superposition of two waves with similar frequencies will trave
at the same speed as the waves themselves.

Howewer, If there is dispersion, then the group velocity can
differ from the phase velocity...
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Group Velocity of an EM Wave in a2 Good Conductor

I'ne dispersion relation for an electromagnetic wave in a good
conductor is, from (35)
12: o
— o
ME &
where o is the real part of the wave vector. The group velocity
is then:

(50)

dw

e
1 4

¥y =

s T
2

~ |— (51
VIEY @ (61)
Comparing with eguation (39) for the phase velocity of an
electromagnetic wave in a good conductor, we find that:
g = 2up (52)

In other words, the group velocity Is approximately twice the
phase velocity.

Class Notes - PH 301 & PH 401 - MODULE -4(Electro Magnetic Theory)

The Skin Depth of a Good Conductor

20

The real part, o, of the wave vector k in a conductor gives the
wavelength of the wave, § measuraes the distance that the wave
travels before its amplitude falls to 1/c of its original value. Let
us write the sclution (18) for a wave travelling in the =
direction in a good conductor as:

E(r t) = By(ryedt=t @7 (53)
where:
FEh(7) = J'foc."'jl"'- (54)

The amplitude of the wave falls by a factor 1/e
1/5. We define the skin depth &

1 oa distance

P 1
]

21

I'ne Skin Depth of a Good Conductor

From eguation (31), we see that for 2 good conductor
(& % we), the skin depth is given by:

|2

=

1 (56)
\ e

For example, consider silver, which has conductivity
o= 6.30 % 1072 Im1, and permittivity
em~eg = 8.85x10712Fm-1,

For radiation of frequency 1010 Hz, the “good conductor”
condition is satisfied, and the skin depth of the radiation is
approximately 0.6 micron (0.6 x 1078 m).

Mote that in vacuum, the wavelength of radiation of frequency
107 Hz is about 3 cm; but in silver, the wavelength is:

2
&= 2" o 2 = 4 micron (&7)
o

Plane Monochromatic Wave in a Good Conductor

The phase difference between the electric and magnetic fields
in a good conductor is given by:

tano =

(58)

So the phase difference is approximately 45°.
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EM Wave Impedance in @ Good Conductor

Class Notes - PH 301 & PH 401 - MODULE -4(Electro Magnetic Theory)

EM Wave Impedance in a Good Conductor

Using the plane wave solutions:
E(F,t) = Ege/lwt-k (59)
Bt t) = Boell=t-k7 {60)
in Maxwell's equation:
VxE=-58 (61)
and using also the relation 5 = uf, we find the relation
between the electric field and magnetic intensity:

Eow By = wully (62)

The vectars k, Fy and Hy are mutually perpendicular,
Therefare, we can write for the wave impedance;
E
Z=20 - “
Hy v — 3l

(63)

24

In 3 good conductor (& % ws), we have (31):

P P i 64
=By (64)
It then follows that the wave impedance (63) in a good
conductor is given by:

ZE o+ (65)

a

T -\
=g

Mote that the impedance 1s now a complex nuimber. As we
shall see later, the behaviour of waves on a boundary depends
on the impedances of the media on either side of the boundary.

The complex phase of the impadance will tell us about the
phases of the waves reflected from and transmitted across the
boundary.

Energy Densities in an EM Wave In a Good Conductor

The time averaged energy densities in the electric and
magnetic fields are:

; 1/ L g2 —2dr
(Ugh = —e(b%)e=efpe™"" (66)

1 - 1 o
Ul = SulH?) = —pHie 297 (67
(U FHH = July (67)

The ratia is:
U cES _ &

WUk ERE _Eig2 (68)

Unhe ;E i
In a good conductor, the sguare of the magnitude of the
impedance is:

7= (69)
o
Hence, in a good conductor, most of the energy is in the
magnetic field:
{Ug) e
LB L2 (70)

Wi @

Complex Conductivity: the Drude Model

So far, we have assumed that the conductivity is a real number,
and is independent of frequency. This is approximately true for
low freguencies.

However, at high frequencies (visible freguencies and above)
the behaviour of electromagnetic waves in many conductors is
best described by a complex conductivity that is a function of
frequency. Recall that the conductivity gives the relationship
between the current density and the electric field:

F=al (71)

S0 a complex conductivity indicates a phase difference between
the current density and an oscillating electric field.

A model to describa this behaviour, based on thae dynamics of
the free electrons in the conductor, was developed in the
1500°s by the German physicist Paul Drude. The detailed
behaviour can get quite complicated, so we will just sketch out
the main ideas.
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Complex Conductivity: the Drude Model

Electrical conductors have both bound and free electrons. The
baound electrons behave the same way as in a dielectric, and are
subject to a binding force — Kz The free electrons have no

Complex Conductivity: the Drude Model

Mow, the current density J depends on the conductivity o

J=ok = Nex (74)
where W is the number of free electrons per unit volume. From
equation (73), we find:

bBinding ferce. The eauation of mation for free electrons in an . Jew fm 2wt
. . & = ——t——Fpet¥ (75)
electromagneatic wave is thereforea: —w? 4wl
. ' Therefore, we can write for the conductivity:
i 4 i = S Egedet (72) w wr HEHVIRY
m . 2, 3
. JwiNe“/m Ne“fm
which has the solution: g= = 76
w? 4 gl T+ jw (76)
"
= $E‘0e7“'! (73) The conductivity is a complex number:
—w? 4 gl
=gy —joa (77)
where:
Ne2r/ NeZof
o= : n;al 92_. : w;n; (78}
[ M 4w
28 29
Complex Conductivity: the Drude Model Complex Conductivity: the Drude Model
Mote that we can relate the "damping constant” T of the
electron motion o the do conductivity &g (the conductivity at :
zero Trequency): —— Fisia}
Ne? as micl
ag= |Ir:1:cv =T (79) 5
In terms of og, the conductivity can be written: =
wil
o0
(80) ¢

=0
1+ jur/T

Equation {80} describes how the conductivity of a conductor
waries with frequency, and is the main result of the Drude
model. The constant o can be determined by experiment; if N,
e and o oare known, then [ can then be calculated from (79):

N2
= (81)
agm
Complex Conductivity: the Drude Model
o AL vory low freguencies:
Ne2
w—0, o ———, 03— 0 (82)
ml

e o s real and constant, as for do conductivity

Af low frequencies (w < ¢ /e, up to the infra-red range) the
free electron term dominates.

In the wvisible region (w == #/g), both terms contribute, and
the formulae (7&8) for the conductivity agree quite well with
the experimental results.

At high frequencies (w % o/e, X-rays and ~-rays) the free
alactron term is small, and the material behaves like a
dielectric

Advanced Electromagnetism az Part 3. EM Waves in Conductors

Summary of Part 3

“¥ou should be able to:

e Derive, from Macwell's equations, the wave equations for the electric
and magnetc fields in conducting media.

» Explain the origin of the "good conductor condition” & % we for an
alectromagnetic plane wave.

s Derive the relationships (amplitude, phase, direction) between the
electric and magnetic fields in a plane wave in conducting media.

= Derlve expressions for the phase and group velccities of an
electromagnetic wave in a good conductor,

= Show that in a conductor the amplitude decays expanentially and
explain what Rappens (o the enargy of Tho wave

s Derive an expression for the “skin depth” in the case of a plane wave
travelling through a conductor,
Explain that when an electromagnetic wave moves through a
conducting medium, the conductivity of the medium can be written as
a complex number, with 2 dependence on the frequency of the wave.

Advanced Electromagretisen 33 Part 3 EM Waves in Conductors
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